High-throughput ultrasensitive characterization of chemical, structural and plasmonic properties of EBL-fabricated single silver nanoparticles.

نویسندگان

  • Tao Huang
  • Wei Cao
  • Hani E Elsayed-Ali
  • Xiao-Hong Nancy Xu
چکیده

Electron beam lithography (EBL) has become a popular means to prepare a wide variety of nano-arrays for numerous studies and applications, including photonics and sensors. Their fabrications and characterizations are costly and time consuming, underscoring the importance of developing effective tools to rapidly study their physicochemical stabilities and properties over time. In this study, we characterized EBL-fabricated single silver nanoparticle (Ag NP) arrays over their 12-week exposure to ambient conditions using SEM/EDS, AFM and dark-field optical microscopy and spectroscopy (DFOMS). We found that chemical compositions, structural morphologies and plasmonic optical properties of single NPs altered drastically over the exposure. Single cuboid and triangular-prism Ag NPs degraded at rates of (0.74 ± 0.02) and (0.66 ± 0.02) per week, and their localized surface plasmon resonance (LSPR) spectra showed striking blue-shifts (171 ± 25 and 203 ± 35 nm) over the 12-week exposure, respectively. Plasmonic colors of single NPs changed distinctively from red to green over the 12-week exposure. The LSPR spectra of individual NPs in each array were acquired simultaneously and correlated specifically with their SEM and AFM images, demonstrating that DFOMS can serve as high-throughput, ultrasensitive and non-invasive means to characterize chemical, structural and optical properties of nano-arrays in situ in real time at single-NP resolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanostencil lithography for high-throughput fabrication of infrared plasmonic sensors

We demonstrate a novel fabrication approach for high-throughput fabrication of engineered infrared plasmonic nanorod antenna arrays with Nanostencil Lithography (NSL). NSL technique, relying on deposition of materials through a shadow mask, offers the flexibility and the resolution to fabricate radiatively engineer nanoantenna arrays for excitation of collective plasmonic resonances. Overlappin...

متن کامل

Improving Hydrophilicity of Polyethersulfone Membrane Using Silver Nanoparticles for Humic Substances Removal

Silver-impregnated membrane was facilely prepared by ex situ silver nanoparticles (NPs) blending method using polyethersulfone (PES) as the base polymer. A total of three membranes [F1(S0), F2(S0.5) and F3(S2.0)] were fabricated at different weight percentages of polymer and silver (Ag) loadings to compare their effects on membrane morphological and performance properties. All membrane types we...

متن کامل

Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties

This paper is a report on the synthesis of the Fe3O4@Ag core-shell with high saturation magnetization of magnetite nanoparticles as the core, by using polyol route and silver shell by chemical reduction. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy analyses confirmed that the particles so produced were monophase. The magnetic properties of the product were investigated by...

متن کامل

Structural and optical characterization of single nanoparticles and single molecule SERS

Although plasmonic nanoparticles are widely utilized in spectroscopy and sensing applications, a quantitative structure-function relationship is lacking. In this proceeding, we discuss measurements of single noble metal nanoparticles using localized surface plasmon resonance (LSPR) spectroscopy, surface-enhanced Raman spectroscopy (SERS), and transmission electron microscopy (TEM) to elucidate ...

متن کامل

Structural and Optical Behavior of Cu Doped Au Nanoparticles Synthesized by Wet-Chemical Method

The nanoparticles of gold doped with various percentage of copper (Cu 10%, 25%, 75%) were synthesized by wet-chemical method at room temperature. Copper (II) sulfate and gold (III) chloride trihydride was taken as the metal precursor and ascorbic acid as a reducing agent and anhydride maleic as surfactant. The reaction is performed with high-speed stirring at room temperature under nitrogen atm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 4 2  شماره 

صفحات  -

تاریخ انتشار 2012